Join of hypergraps and their spectra

Amitesh Sarkar, Anirban Banerjee ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, IISER Kolkata

Date: 26.11.2021.

Hypergraphs

- A hypergraph $\mathcal{H}(V, E)$ is consists of a vertex set V and an edge set E, where $E \subset \mathcal{P}(V) \backslash\{\phi\}$.
- m-Uniform Hypergraph.

Hypergraphs

- A hypergraph $\mathcal{H}(V, E)$ is consists of a vertex set V and an edge set E, where $E \subset \mathcal{P}(V) \backslash\{\phi\}$.
- m-Uniform Hypergraph.
- Degree of a vertex.
- Regular Hypergraph.
- Paths in hypergraphs is a sequence $v_{1} e_{1} v_{2} e_{2} \ldots v_{l} e_{l}$ of distinct vertices and edges satisfying $v_{i}, v_{i+1} \in e_{i}$.
- Connected Hypergraph.

Adjacency Matrix

- Let $\mathcal{H}(V, E, W)$ be a hypergraph with the vertex set $V=\{1,2, \ldots, n\}$, the edge set E and with an weight function $W: E \rightarrow \mathbb{R}_{\geq 0}$ defined by $W(e)=w_{e}$ for all $e \in E$. The adjacency matrix $A_{\mathcal{H}}$ of \mathcal{H} is defined as

$$
\left(A_{\mathcal{H}}\right)_{i j}:=\sum_{e \in E ; i, j \in e} \frac{w_{e}}{|e|-1} .
$$

This definition is adopted from the definition of the adjacency matrix of an unweighted non-uniform hypergraph defined in In Press, Linear Algebra and its Applications, 2020. DOI: 10.1016/j.laa.2020.01.012.

- Thus for an m-uniform hypergraph \mathcal{H} we have $\left(A_{\mathcal{H}}\right)_{i j}=\frac{1}{m-1} \sum_{e \in E, i, j \in e} w_{e}$. If we take $w_{e}=1$, then $\left(A_{\mathcal{H}}\right)_{i j}=\frac{d_{i j}}{m-1}$ where $d_{i j}$ is the codegree of the vertices i, j, i.e., the number of edges containing both the vertices i and j.

Equitable partition for hypergraphs

Let $\mathcal{H}(V, E, W)$ be an m-uniform weighted hypergraph with n vertices.

- We say a partition $\pi=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ of V is an equitable partition of V if for any $p, q \in\{1,2, \ldots, k\}$ and for any $i \in C_{p}$,

$$
\sum_{j, j \in C_{q}}\left(A_{\mathcal{H}}\right)_{i j}=b_{p q},
$$

where $b_{p q}$ is a constant depends only on p and q.
For an equitable partition with k-number of cells we define the quotient matrix B as
$(B)_{p q}=b_{p q}$, for $1 \leq p, q \leq k$.

- The characteristic matrix P of order $n \times k$ as follows

$$
(P)_{i j}= \begin{cases}1 & \text { if vertex } \mathrm{i} \in C_{j} \\ 0 & \text { otherwise }\end{cases}
$$

- We have $A_{\mathcal{H}} P=P B$ and so $A_{\mathcal{H}}^{k} P=P B^{k}$ for any $k \in \mathbb{N}$. Therefore $f\left(A_{\mathcal{H}}\right) P=P f(B)$, for any polynomial $f(x)$. If $f\left(A_{\mathcal{H}}\right)=0$, then $\operatorname{Pf}(B)=0$ and which gives $f(B)=0$. Again $A_{\mathcal{H}}$ being a real symmetric matrix, is diagonalizable. So minimal polynomial of $A_{\mathcal{H}}$ is product of linear polynomials. Hence minimal polynomial of B is also product of linear polynomials. Therefore B is also diagonalizable.
- For each $\lambda \in \operatorname{spec}(B)$ with the multiplicity $r, \lambda \in \operatorname{spec}\left(A_{\mathcal{H}}\right)$ with the multiplicity atlest r.

Weighted joining of hypergraphs

Let $\mathcal{H}_{1}\left(V_{1}, E_{1}, W_{1}\right)$ and $\mathcal{H}_{2}\left(V_{2}, E_{2}, W_{2}\right)$ be two m-uniform hypergraphs. The join $\mathcal{H}(V, E, W):=\mathcal{H}_{1} \oplus^{w_{12}} \mathcal{H}_{2}$ of \mathcal{H}_{1} and \mathcal{H}_{2} is the hypergraph with the vertex set $V=V_{1} \cup V_{2}$, edge set $E=\cup_{i=0}^{2} E_{i}$, where $E_{0}=\left\{e \subseteq V:|e|=m, e \cap V_{i} \neq \phi, \forall i=1,2\right\}$ and the weight function $W: E \rightarrow \mathbb{R}_{\geq 0}$ is defined by

$$
W(e)= \begin{cases}W_{1}(e) & \text { if } e \in E_{1} \\ W_{2}(e) & \text { if } e \in E_{2} \\ W_{12} & \text { otherwise }\end{cases}
$$

where w_{12} is a real non-negative constant.

Weighted joining of a set of uniform hypergraphs

Let $S=\left\{\mathcal{H}_{i}\left(V_{i}, E_{i}, W_{i}\right): 1 \leq i \leq k\right\},\left|V_{i}\right|=n_{i}$, be a set of m-uniform hypergraphs, $k \leq m$. Using the set S, of hypergraphs we construct a new m-uniform hypergraph $\mathcal{H}(V, E, W)$ where $V=\cup_{i=1}^{k} V_{i}, E=\cup_{i=0}^{k} E_{i}, E_{0}=\left\{e \subseteq V: e \cap V_{i} \neq \phi, \forall i=1,2, \ldots, k,|e|=m\right\}$ and
$W: E \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
W(e)= \begin{cases}W_{i}(e) & \text { if } e \in E_{i} \text { for } i=1,2 \ldots, k \\ w_{s} & \text { otherwise }\end{cases}
$$

where w_{s} is a real non-negative constant. The resultant hypergraph \mathcal{H} is called the join of a set S of m-uniform hypergraphs \mathcal{H}_{i} 's and it is denoted as $\mathcal{H}:=\oplus_{\mathcal{H}_{i} \in S}^{w_{s}} \mathcal{H}_{i}$.

Adjacency matrix of the join \mathcal{H}

The adjacency matirx $A_{\mathcal{H}}$ of \mathcal{H} can be expressed as

$$
\left(A_{\mathcal{H}}\right)_{i j}= \begin{cases}\left(A_{\mathcal{H}}\right)_{i j}+w_{s} d_{p p}^{S(m)} & \text { if } i, j \in V_{p}, i \neq j, \\ 0 & i=j, \\ w_{s} d_{p q}^{S(m)} & \text { if } i \in V_{p}, j \in V_{q}, p \neq q\end{cases}
$$

where

$$
\begin{aligned}
d_{p p}^{S(m)}: & \left.=\frac{1}{m-1} \text { (number of new edges containing two fixed vertices } l_{1}, l_{2} \text { from } V_{p}\right) \\
& =\frac{1}{m-1} \sum_{\substack{i_{p} \geq 0, i_{j} \geq 1,(j \neq p) \\
i_{1}+i_{2}+\cdots+i_{k}=m-2}}\binom{n_{1}}{i_{1}}\binom{n_{2}}{i_{2}} \ldots\binom{n_{p-1}}{i_{p-1}}\binom{n_{p}-2}{i_{p}}\binom{n_{p+1}}{i_{p+1}} \ldots\binom{n_{k}}{i_{k}}
\end{aligned}
$$

$d_{p q}^{S(m)}:=\frac{1}{m-1}$ (number of new edges containing two fixed vertices one from V_{p} and another from

$$
\begin{aligned}
& =\frac{1}{m-1} \sum_{\substack{i_{p, i} \geq 0, i_{j} \geq 1,(j \neq p, q) \\
i_{1}+i_{2}+\cdots+i_{k}=m-2}}\binom{n_{1}}{i_{1}}\binom{n_{2}}{i_{2}} \ldots\binom{n_{p-1}}{i_{p-1}}\binom{n_{p}-1}{i_{p}}\binom{n_{p+1}}{i_{p+1}} \ldots \\
& \binom{n_{q-1}}{i_{q-1}}\binom{n_{q}-1}{i_{q}}\binom{n_{q+1}}{i_{q+1}} \ldots\binom{n_{k}}{i_{k}} .
\end{aligned}
$$

Weighted jooining of uniform hypergraphs on a backbone hypergraph

Let $\mathcal{H}(V, E, W)$ be an m-uniform hyperghraph. We call the hypergraph $\mathcal{H}_{b}\left(V_{b}, E_{b}, W_{b}\right), V_{b}=\{1,2, \ldots, n\}$ as a backbone of \mathcal{H} if \mathcal{H} can be constructed by a set $S=\left\{\mathcal{H}_{i}\left(V_{i}, E_{i}, W_{i}\right): i=1,2, \ldots, n\right\}$, of m-uniform hypergraphs, $\left(m \geq \max \left\{|e|: e \in E_{b}\right\}\right)$ with the following operations:
(1) Replace vertex i of \mathcal{H}_{b} by \mathcal{H}_{i}, for $i=1,2, \ldots, n$.
(2) For each edge $e=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} \in E_{b}$, take $S_{e}=\left\{\mathcal{H}_{j_{i}}: i=1,2, \ldots, k\right\}$ and apply the operation $\oplus_{S_{e}}^{W_{b}(e)}$ defined above.
We call the hypergraphs \mathcal{H}_{i} 's as participants on the backbone \mathcal{H}_{b} to form the hypergraph \mathcal{H}. Thus the adjacency matrix for \mathcal{H} can be written as

$$
\left(A_{\mathcal{H}}\right)_{i j}= \begin{cases}\left(A_{\mathcal{H}}\right)_{i j}+\sum_{e \in E_{b}, p \in e} W_{b}(e) d_{p p}^{S_{e}(m)} & \text { if } i, j \in V_{p}, i \neq j \\ 0 & \text { if } i=j, \\ \sum_{e \in E_{b}, p, q \in e} W_{b}(e) d_{p q}^{S_{e}(m)} & \text { if } i \in V_{p}, j \in V_{q}, p \neq q\end{cases}
$$

Perron-Frobenius and Schur Complement

- A matrix A is called reducible if there exists a permutation matrix P such that

$$
P^{\prime} P^{t}=\left[\begin{array}{cc}
(B)_{k \times k} & C \\
0 & (D)_{(n-k) \times(n-k)}
\end{array}\right]
$$

otherwise A is said to be irreducible.

- \mathcal{H} is connected iff $A_{\mathcal{H}}$ is irreducible.

Perron-Frobenius Theorem Let A be a non-negative irreducible matrix. Then

- A has a positive eigenvalue λ with positive eigenvector.
- λ is simple and for any other eigenvalue μ of $A,|\mu| \leq \lambda$.

Schur complement

Let A be an $n \times n$ matrix partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} and A_{22} are square matrices. If A_{11} and A_{22} are invertible, then

$$
\begin{align*}
\operatorname{det}(A) & =\operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}-A_{12} A_{11}^{-1} A_{21}\right) \tag{1}\\
& =\operatorname{det}\left(A_{22}\right) \operatorname{det}\left(A_{11}-A_{21} A_{11}^{-1} A_{12}\right) \tag{2}
\end{align*}
$$

Theorem

Let $\mathcal{H}_{b}\left(V_{b}, E_{b}, W_{b}\right)$ be a hypergraph with the vertex set $V_{b}=\{1,2, \ldots, n\}$ and let $\left\{\mathcal{H}_{i}\left(V_{i}, E_{i}, W_{i}\right): i=1,2, \ldots, n\right\}$ be a collection of regular m-uniform hypergraphs ($m \geq\left\{|e|: e \in E_{b}\right\}$). Let $\mathcal{H}(V, E, W)$ be the m-uniform hypergraph constructed by taking \mathcal{H}_{b} as backbone hypergraph and \mathcal{H}_{i} 's as participants. Then for any non-Perron eigenvalue λ of $A_{\mathcal{H}_{p}}$ with multiplicity I, $\lambda-\sum_{e \in E_{b}, p \in e} W_{b}(e) d_{p p}^{S_{e}(m)}$ is an eigenvalue of $A_{\mathcal{H}}$ with the multiplicity atleast 1.

Proof.

Let (λ, f) be an eigenpair of $A_{\mathcal{H}_{p}}$, such that f is orthogonal to the constant vector $[1,1,1, \ldots, 1]^{t}$. We define $f^{*}: V \rightarrow \mathbb{R}$ by

$$
f^{*}(v)= \begin{cases}f(v) & \text { if } v \in V_{p} \\ 0 & \text { otherwise }\end{cases}
$$

Thus f^{*} is an eigenvector of $A_{\mathcal{H}}$ corresponding to the eigenvalue $\lambda-\sum_{e \in E_{b}, p \in e} w_{e} d_{p p}^{S_{e}(m)}$. Since $\sum_{i \in V_{p}} f(i)=0$, thus the proof folows.

When $\mathcal{H}_{i}\left(V_{i}, E_{i}, W_{i}\right)$'s are regular, the partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ forms an equitable partition for \mathcal{H}. In particular if \mathcal{H}_{i} 's are r_{i} regular then the quotient matrix B is as follows

$$
(B)_{p q}= \begin{cases}r_{p}+\left(n_{p}-1\right) \sum_{e \in E_{b}, p \in e} W_{b}(e) d_{p p}^{S_{e}(m)} & \text { if } p=q \tag{3}\\ n_{q} \sum_{e \in E_{b}, p, q \in e} w_{b}(e) d_{p q}^{S_{e}(m)} & \text { otherwise. }\end{cases}
$$

Let $\left\{g_{i} \mid i=1,2, \ldots, n\right\}$ be a set of linearly independent eigenvectors of B. Then $\left\{P g_{i} \mid i=1,2, \ldots, n\right\}$ is also a set of linearly independent eigenvectors of $A_{\mathcal{H}}$. Now from the proof of Theorem 1 we have $N:=\sum_{i=1}^{n} n_{i}-n$ linearly independend eigenvectors $\left\{f_{i}^{*} \mid i=1,2, \ldots, N\right\}$ of $A_{\mathcal{H}}$. So we have a set $\left\{P g_{i} \mid i=1,2, \ldots, n\right\} \cup\left\{f_{i}^{*} \mid i=1,2, \ldots, N\right\}$ of $\sum_{i=1}^{n} n_{i}$ eigenvectors of $A_{\mathcal{H}}$. Now we show that this set is linearly independent. Here for all i, j

$$
\begin{aligned}
<f_{i}^{*}, P g_{j}> & =\sum_{p=1}^{n}\left(\sum_{k \in V_{p}} f_{i}^{*}(k)\right) C_{j_{p}}\left[\because P g_{j}(k)=C_{j_{p}}, \text { constant for all } k \in V_{p} .\right] \\
& =0\left[\because \sum_{k \in V_{p}} f_{i}^{*}(k)=0 .\right]
\end{aligned}
$$

Therefore in Theorem 1 the remaining n eigenvalues of $A_{\mathcal{H}}$ can be obtained from B.

Corollary

Let $S=\left\{\mathcal{H}_{i}\left(V_{i}, E_{i}, W_{i}\right): 1 \leq i \leq k \leq m\right\}$ be a set of m-uniform hypergraphs where \mathcal{H}_{i} are r_{i}-regular. Let $\mathcal{H}=\oplus_{\mathcal{H}_{i} \in S}^{w_{s}} \mathcal{H}_{i}$. Then for any non-perron eigenvalue λ of $A_{\mathcal{H}_{i}}$ with the multiplicity $I, \lambda-w_{s} d_{i i}^{S(m)}$ is an eigenvalue of $A_{\mathcal{H}}$ with multiplicity atleast I.

Note that the remaining k eigenvalues can be obtained from the quotient martrix B defined as

$$
(B)_{p q}= \begin{cases}r_{p}+\left(n_{p}-1\right) w_{s} d_{p p}^{S(m)} & \text { if } p=q \\ n_{q} w_{s} d_{p q}^{S(m)} & \text { otherwise }\end{cases}
$$

Example

Take $\mathcal{H}_{i}=\bar{K}_{n_{i}}^{m}, 1 \leq i \leq k \leq m, S=\left\{\mathcal{H}_{i}: i=1,2, \ldots, k\right\}$ and $w_{s}=1$. Then $\oplus_{\mathcal{H}_{i} \in S}^{\mathbf{1}} \mathcal{H}_{i}=K_{n_{1}, n_{\mathbf{2}}, \ldots, n_{k}}^{m}$, which is the weak m-uniform k-partite complete hypergraph. Using the above corollary we get that for any $i=1,2, \ldots, k ;-d_{p p}^{S(m)}$ is an eigenvalue of $A_{K_{n_{\mathbf{1}}, n_{\mathbf{2}} \ldots, n_{k}}}$ with the multiplicity atleast $\left(n_{i}-1\right)$ for $i=1,2, \ldots, k$. The remaining eigenvalues of $A_{K_{n_{1}}^{m}, n_{\mathbf{2}}, \ldots, n_{k}}^{m}$ are the eigenvalues of the quotient matrix B, defined as

$$
(B)_{p q}= \begin{cases}\left(n_{p}-1\right) d_{p p}^{S(m)} & \text { if } p=q \\ n_{q} d_{p q}^{S(m)} & \text { otherwise }\end{cases}
$$

- In the above example, if we take $k=m$, we have 0 as an eigenvalue of $A_{K_{n_{1}, n_{2}}^{m}, \ldots, n_{m}}$ with the multiplicity atleast $\sum_{i=1}^{m} n_{i}-m$. Here, the quotient matrix formed by the equitable partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ and which is given by

$$
B=\frac{1}{m-1}\left[\begin{array}{ccccc}
0 & s_{1} & \cdots & s_{1} & s_{1} \\
s_{2} & 0 & \cdots & s_{2} & s_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
s_{m} & s_{m} & \cdots & s_{m} & 0
\end{array}\right]
$$

where $s_{i}=\prod_{j=1, j \neq i}^{m} n_{j}$.

- Note that $\alpha(\neq 0) \in \operatorname{spec}\left(K_{n_{1}, n_{\mathbf{2}}, \ldots, n_{m}}^{m}\right)$ if and only if $r^{m-1} \alpha \in \operatorname{spec}\left(K_{r n_{\mathbf{1}}, r n_{\mathbf{2}}, \ldots, r n_{m}}^{m}\right)$ for $r \in \mathbb{N}$.
- Let $\mathcal{H}=K_{l_{1}}^{m_{1}, n_{1}, \ldots, n_{1}}, \underbrace{, n_{2}, n_{2}, \ldots, n_{2}}_{l_{2}}$, where $l_{1}+l_{2}=m$. Then the quotient matrix B for the equitable partition formed by the m-parts of \mathcal{H} can be written as $B=\frac{1}{m-1} B^{\prime}$, where B^{\prime} is given by

$$
\left[\begin{array}{cc}
s_{1}\left(J_{l_{1}}-l_{1}\right) & s_{1} J_{l_{1} \times l_{2}} \\
s_{2} J_{l_{2} \times l_{1}} & s_{2}\left(J_{12}-l_{12}\right)
\end{array}\right]
$$

where $s_{1}=n_{1}^{l_{1}-1} n_{2}^{l_{2}}, s_{2}=n_{1}^{l_{1}} n_{2}^{l_{2}-1}$.

- We have the characteristic polynomial of B^{\prime} as follows

$$
\begin{aligned}
f_{B^{\prime}}(x) & =\operatorname{det}\left(B^{\prime}-x I\right) \\
& =\operatorname{det}\left(s_{2} J_{l_{2}}-\left(s_{2}-x\right) I\right) \operatorname{det}\left(s_{1} J_{l_{\mathbf{1}}}-\left(s_{1}+x\right) I-s_{1} s_{2} J_{l_{1} \times l_{\mathbf{2}}}\left(s_{2} J_{l_{2}}-\left(s_{2}+x\right) I\right)^{-\mathbf{1}} J_{l_{2} \times l_{\mathbf{1}}}\right. \\
& =(-1)^{m-2}\left(x+s_{1}\right)^{/_{1}-1}\left(x+s_{2}\right)^{l_{2}-1}\left(x-a^{+}\right)\left(x-a^{-}\right)
\end{aligned}
$$

where $a^{ \pm}=\frac{1}{2}\left[s_{1}\left(l_{1}-1\right)+s_{2}\left(l_{2}-1\right) \pm \sqrt{\left\{s_{1}\left(l_{1}-1\right)+s_{2}\left(l_{2}-1\right)\right\}^{2}+4 s_{1} s_{2}\left(l_{1}+l_{2}-1\right)}\right]$.
Thus the eigenvalues of \mathcal{H} are $\frac{-s_{i}}{m-1}$ with the multiplicity $l_{i}-1$ for $i=1,2$ and $\frac{a^{ \pm}}{m-1}$ with the multiplicity 1

Using a result (1) from R. B. Bapat, M. Karimi. Integral complete multipartite graphs. Linear Algebra and its Applications, 549: 1-11, 2018 we have the following result

Proposition

Characteristic polynomial of $K_{n_{\mathbf{1}}, n_{\mathbf{2}}, \ldots, n_{m}}^{m}$ is $x^{n-m}\left(x^{m}-\sum_{i=2}^{m} \frac{i-1}{(m-1)^{i}} \sigma_{i}\left(s_{1}, s_{2}, \ldots, s_{m}\right) x^{m-i}\right)$ where $n=\sum_{i=1}^{m} n_{i}, s_{i}=\prod_{j=1, j \neq i}^{m} n_{j}$ and $\sigma_{i}\left(s_{\mathbf{1}}, s_{2}, \ldots, s_{m}\right)=\sum_{1 \leq j_{\mathbf{1}}<j_{\mathbf{2}}<\cdots<j_{i} \leq m} s_{j_{\mathbf{1}}} s_{j_{\mathbf{2}}} \ldots s_{j_{i}}$.

- From the above result it is clear that the quotient matrix B is non-singular. Hence the multiplicity of eigenvalue 0 of $K_{n_{1}, n_{\mathbf{2}}, \ldots, n_{m}}^{m}$ is $n-m$.

Edge Corona

Let $\mathcal{H}_{0}\left(V_{0}, E_{0}\right)$ be an m-uniform hypergraph with the edge set $E_{0}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ and $\left|V_{0}\right|=n_{0}$. Also let $\mathcal{H}_{i}\left(V_{i}, E_{i}\right)(i=1,2, \ldots, k)$ be m-uniform hypergraphs. For each $i=1,2, \ldots, k$ we consider $e_{i} \oplus \mathcal{H}_{i}$. The new hypergraph is known as the edge corona of hypergraphs and we write it by $\mathcal{H}=\mathcal{H}_{0} \square^{k} \mathcal{H}_{i}$. When $\left|V_{i}\right|=n_{1}$ for all $i=1, \ldots, k$, we write $D_{i}=A_{\mathcal{H}_{i}}+c\left(J_{n_{1}}-I_{n_{1}}\right)$, take $D=\operatorname{diag}\left(D_{1}, D_{2}, \ldots, D_{k}\right), R=$ vertex-edge incidence matrix, for $\mathcal{H}_{0}, 1_{n_{1}}=[1,1, \ldots, 1]$ row vector of length $n_{1}, a=\binom{m+n_{1}-2}{m-2}-1$,
$b=\frac{1}{m-1}\binom{n+n_{1}-2}{m-2}, \quad c=\binom{m+n_{1}-2}{m-2}-\binom{n_{1}-2}{m-2}$.

Theorem

Let $\mathcal{H}_{0}\left(V_{0}, E_{0}\right)$ be an m-uniform hypergraph with $\left|V_{0}\right|=n,\left|E_{0}\right|=k$. Let $\left\{\mathcal{H}_{i}\left(V_{i}, E_{i}\right): 1 \leq i \leq k,\left|V_{i}\right|=n_{1}\right\}$ be a set of m-uniform hypergraphs. Then the the characteristic polynomial of $A_{\mathcal{H}}$ for the edge corona $\mathcal{H}=\mathcal{H}_{0} \square^{k} \mathcal{H}_{i}$ is as follows

$$
\begin{equation*}
f_{\mathcal{H}}(x)=\operatorname{det}\left(D-x I_{k n_{1}}\right) \operatorname{det}\left(\left\{(a+1) A_{\mathcal{H}_{0}}-x I_{n}-b^{2}\left(R \otimes 1_{n_{1}}\right)\left(D-x I_{k n_{1}}\right)^{-1}\left(R^{T} \otimes 1_{n_{1}}^{T}\right)\right\}\right) \tag{4}
\end{equation*}
$$

Corollary

Let \mathcal{H}_{i} 's be r_{1}-regular hypergraphs and $\operatorname{spec}\left(\mathcal{A}_{\mathcal{H}_{i}}\right)=\left\{\lambda_{i}^{(1)}, \lambda_{i}^{(2)}, \ldots, \lambda_{i}^{\left(n_{1}\right)}\left(=r_{1}\right)\right\}$. Then the characteristic polynomial of \mathcal{H} can be given by

$$
\begin{equation*}
f_{\mathcal{H}}(x)=\left\{r_{1}+\left(n_{1}-1\right) c-x\right\}^{k-n} \operatorname{det}\left(\beta_{1}(x) A_{\mathcal{H}_{0}}-b^{2} n_{1} D_{d}+\beta_{2}(x) I_{n}\right) \prod_{i=1}^{k} \prod_{j=1}^{n_{1}-1}\left(\lambda_{i}^{(j)}-c-x\right), \tag{5}
\end{equation*}
$$

where $D_{d}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where d_{i} denote the degree of vertices of
$A_{\mathcal{H}_{0}}, \beta_{1}(x)=(a+1)\left\{r_{1}+\left(n_{1}-1\right) c-x\right\}-(m-1) b^{2} n_{1}, \quad \beta_{2}(x)=x\left\{x-r_{1}-\left(n_{1}-1\right) c\right\}$.

Corollary

Let \mathcal{H}_{i} 's be the hypergraphs mentioned in the above corollary and \mathcal{H}_{0} be r-regular with $\operatorname{spec}\left(A_{\mathcal{H}_{0}}\right)=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}(=r)\right\}$. Then the adjacency eigenvalues of \mathcal{H} are $r_{1}+\left(n_{1}-1\right) c$ with the multiplicity $k-n, \lambda_{i}^{(j)}$ with the multiplicity one, for all $i=1,2, \ldots, k, j=1,2, \ldots, n_{1}-1$ and $\beta_{j}^{ \pm}$with the multiplicity one for $j=1,2, \ldots, n$, where
$\beta_{j}^{ \pm}=\frac{1}{2}\left[r_{1}+\left(n_{1}-1\right) c+(a+1) \mu_{j} \pm \sqrt{\left\{r_{1}+\left(n_{1}-1\right) c-(a+1) \mu_{j}\right\}^{2}+4 b^{2} n_{1}\left\{(m-1) \mu_{j}+r\right\}}\right]$.

Loose cycles and loose paths

Generalized s-loose path $P_{L(s ; n)}^{(m)}$ is an m-uniform hypergraph with the vertex set $V=\{1,2, \ldots, m+(n-1)(m-1)\}$ and edge set the
$E=\{\{i(m-s)+1, i(m-s)+2, \ldots, i(m-s)+m\}: i=0,1, \ldots, n-1\}$ [Peng2016]. For $s=1, P_{L(\mathbf{1} ; n)}^{(m)}$ is known as loose path. Similarly, generalized s-loose cycle $C_{L(s ; n)}^{m}$ is an m-uniform hypergraph with the vertex set $V=\{1,2, \ldots, n(m-s)\}$ and the edge set $\{\{i(m-s)+1, \ldots, i(m-s)+m\}: i=$ $0,1, \ldots, n-1\} \cup\{n(m-s)-s+1, n(m-s)-s+2, \ldots, n(m-s), 1,2, \ldots, s\}$.

Loose cycle

Theorem

The adjacency eigenvalues of an s-loose cycle $C_{L(s ; n)}^{(m)}$, are

- $\frac{-2}{2 s-1}$ with the multiplicity $n(s-1)$ and $\frac{2}{2 s-1}\left(s-1+s \cos \frac{2 \pi i}{n}\right)$ with the multiplicity one, for $i=1,2, \ldots, n$, when $m=2 s$ and
(2) $\frac{-1}{m-1}$ with the multiplicity atleast $n(m-2 s-1), \frac{-2}{m-1}$ with the multiplicity atleast $n(s-1)$ and $\gamma_{i}^{+}, \gamma_{i}^{-}$with the multiplicity atleast one, where,

$$
\gamma_{i}^{ \pm}=\frac{1}{2}\left[m-3+2 s \cos \frac{2 \pi i}{n} \pm \sqrt{\left(m-3+2 s \cos \frac{2 \pi i}{n}\right)^{2}+8\left(m-s-1+s \cos \frac{2 \pi i}{n}\right)}\right],
$$

for $i=1,2, \ldots, n$, when $m \geq 2 s+1$.

Loose cycles and loose paths

Proof.

- Case $m=2 s$: Let $\mathcal{H}=C_{L(s ; n)}^{(2 s)}$. In the Theorem 1 take $\mathcal{H}_{b}=C_{n}$, the cycle graph over n vertices, and $\mathcal{H}_{i}=K_{s}$, the complete graph with s-vertices with each edge weight two. Then the resultant hypergraph is a graph, $G($ say $)$. Hence $A_{\mathcal{H}}=\frac{1}{2 s-1} A_{G}$. Thus $\frac{-2}{2 s-1}$ is an eigenvalue of $A_{\mathcal{H}}$ with the multiplicity atleast $n(s-1)$. The quotient matrix is $B=\frac{1}{2 s-1}\left\{s A_{C_{n}}+2(s-1) I_{n}\right\}$. The remaining eigenvalues of $A_{\mathcal{H}}$ are $\frac{2}{2 s-1}\left(s-1+s \cos \frac{2 \pi i}{n}\right)$ for $i=1,2, \ldots, n$.
- Case $m \geq 2 s+1$: Let $\mathcal{H}_{b}=C_{n} \square^{n} K_{1}$ and $\mathcal{H}=C_{L(s ; n)}^{(m)}$. We take the vertices of \mathcal{H}_{b} as $V\left(C_{n}\right)=\{1,2, \ldots, n\}$ and $V\left(G_{b}\right) \backslash V\left(C_{n}\right)=\{n+1, n+2, \ldots, 2 n\}$. For $i=1,2, \ldots, n$, we take $\mathcal{H}_{i}=K_{s}$, the complete graph with s vertices with edge weight 1 , and for $i=n+1, \ldots, 2 n$, take $G_{i}=K_{m-2 s}$ with edge weight 2 . Considering \mathcal{H}_{b} as backbone graph with each edge weight one and G_{i} 's as participants, we get a graph G (say). Then $A_{\mathcal{H}}=\frac{1}{m-1} A_{G}$. Now using the Theorem 1 we get the eigenvalues of A_{G} which are -1 with the multiplicity atleast $n(m-2 s-1)$ and -2 with multiplicity $n(s-1)$.

Proof.

Next using Equation (3) we have the remaining $2 n$ eigenvalues are the eigenvalues of the quotient matrix B given by

$$
(B)_{p q}=\frac{1}{m-1} \begin{cases}r_{q} & \text { if } p=q \\ n_{q} & \text { if } p \sim q \text { in } G_{B} \\ 0 & \text { otherwise }\end{cases}
$$

where $r_{q}=2 s-2, n_{q}=s$ for $q=1,2, \ldots, n$ and $r_{q}=m-2 s-1, n_{q}=m-2 s$ for $q=n+1, \ldots, 2 n$. We write

$$
B=\frac{1}{m-1}\left[\begin{array}{cc}
(2 s-2) I_{n}+s A_{C_{n}} & t\left(I_{n}+Y\right) \\
s\left(I_{n}+Y^{t}\right) & (t-1) I_{n}
\end{array}\right],
$$

where $t=m-2 s, A_{C_{n}}$ is the adjacency matrix of an n-cycle C_{n} and Y is the $n \times n$ circulant matrix with the first row $[0,0, \ldots, 1]$. We suppose $B=\frac{1}{m-1} B^{\prime}$. Then using Lemma 9 and the fact $\left(I_{n}+Y\right)\left(I_{n}+Y^{t}\right)=2 I_{n}+A_{C_{n}}$ we have the cahracteristic polynomial of B^{\prime}, as follows

$$
\begin{align*}
f_{B^{\prime}}(x) & =\operatorname{det}\left(B^{\prime}-x I_{n}\right) \\
& =\operatorname{det}\left(\left\{(t-1-x) I_{n}\right\}\right) \operatorname{det}\left(\left\{s A_{C_{n}}+(2 s-2-x) I_{n}-\frac{s t}{t-1-x}\left(I_{n}+Y\right)\left(I_{n}+Y^{t}\right)\right\}\right) \\
& =\operatorname{det}\left(\left\{x^{2}-(2 s+t-3) x-(2 s+2 t-2)\right\} I_{n}-(s+s x) A_{C_{n}}\right) . \tag{6}
\end{align*}
$$

The eigenvalues of $A_{C_{n}}$ are $\mu_{i}=2 \cos \frac{2 \pi i}{n}, i=1,2 \ldots, n$. Thus from the Equation (6) we have

$$
\begin{align*}
f_{B^{\prime}}(x) & =\prod_{i=1}^{n}\left\{x^{2}-\left(2 s+t-3+s \mu_{i}\right) x-\left(2 s+2 t-2+s \mu_{i}\right)\right\} \\
& =\prod_{i=1}^{n}\left(x-\gamma_{i}^{+}\right)\left(x-\gamma_{i}^{-}\right) \tag{7}
\end{align*}
$$

Question: What are the adjacency eigenvalues of $C_{L(s ; n)}^{m}$ for $m \leq 2 s-1$?

Lemma

For a square matrix A we have

$$
\begin{equation*}
\operatorname{det}\left(A+\sum_{i=1, n} u_{i i} E_{i i}\right)=\operatorname{det}(A)+\sum_{i=1, n} u_{i i} \operatorname{det}(A(i \mid i))+u_{11} u_{n n} \operatorname{det}(A(1, n \mid 1, n)) \tag{8}
\end{equation*}
$$

where $A(i \mid j)$ is the matrix obtained from A by deleting the i-th row and j-th column, respectively, and $E_{i, j}$ is the matrix with 1 in (i, j)-th position and zero elsewhere.

Theorem

The adjacency eigenvalues of an s-loose path $P_{L(s, n)}^{m}$ are

- $\frac{-1}{m-1}$ with the multiplicity atleast $n(m-1)-2 s(n-1), \frac{-2}{m-1}$ with the multiplicity atleast $(n-1)(s-1)$ and $\frac{\alpha_{i}}{m-1}$ with the multiplicity one, for $i=1,2, \ldots, 2 n-1$, where α_{i} 's are the zeros of the polynomial

$$
\frac{(m-s-1-x)^{2} f_{1}(x)+2 s^{2}(1+x)(m-s-1-x) f_{2}(x)+s^{4}(1+x)^{2} f_{3}(x)}{m-2 s-1-x}
$$

where

$$
f_{j}(x)=\prod_{i=1}^{n-j}\left\{x^{2}-\left(m-3+2 s \cos \frac{\pi i}{n-j+1}\right) x-2\left(m-s-1-x+s \cos \frac{\pi i}{n-j+1}\right)\right\} .
$$

for $j=1,2,3$, when $m \geq 2 s+1$ and
(2) $\frac{-1}{m-1}$ with the multiplicity $2(s-1), \frac{-2}{m-1}$ with multiplicity $(n-1)(s-1)$ and $\frac{\beta_{i}}{2 s-1}$ with the multiplicity one, where β_{i} are the zeros of the polynomial
$(x-s+1)^{2} t_{1}(x)+2 s^{2}(x-s+1) t_{2}(x)+s^{4} t_{3}(x)$, where
$t_{j}(x)=\prod_{i=1}^{n-j}\left(2 s-2-x+2 s \cos \frac{\pi i}{n-j+1}\right)$, for $j=1,2,3$ when $m=2 s$.

Vertex Corona

- Let $\mathcal{H}(V, E)$ be an m-uniform hypergraph. A subhypergraph induced by $V^{\prime} \subset V$ is the hypergraph $\mathcal{H}\left[V^{\prime}\right]$ with the vertex set V^{\prime} and edge set $E^{\prime}=\left\{e: e \in E, e \subset V^{\prime}\right\}$. Now for $V^{\prime} \subset V$ and a hypergraph $\mathcal{H}^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}\right)$, we denote $V^{\prime} \oplus \mathcal{H}^{\prime \prime}$ as the hypergraph with the vertex set $V^{\prime} \cup V^{\prime \prime}$ and edge set $E\left(\mathcal{H}\left[V^{\prime}\right] \oplus \mathcal{H}^{\prime \prime}\right) \cup E(\mathcal{H})$.
- Let $\mathcal{H}_{0}\left(V_{0}, E_{0}\right)$ be an m-uniform hypergraph and $\pi=\left\{V_{0}^{(1)}, V_{0}^{(2)}, \ldots, V_{0}^{(k)}\right\}$ be a partition of $V_{0}=\{1,2, \ldots, n(=p k)\}$ with $V_{0}^{(i)}=\{(i-1) p+1,(i-1) p+2, \ldots, i p\}$ for $i=1,2, \ldots, k$. Also let $\left\{\mathcal{H}_{i}\left(V_{i}, E_{i}\right): 1 \leq i \leq k\right\}$ be a set of m-uniform hypergraphs with $\left|V_{i}\right|=n_{i}$. For each $i=1,2, \ldots, k$, we take p copies, $\left\{\mathcal{H}_{i}^{(j)}\left(V_{i}^{(j)}, E_{i}^{(j)}\right): j=1,2 \ldots, p\right\}$, of $\mathcal{H}_{i}\left(V_{i}, E_{i}\right)$. Then we consider $V_{0}^{(i)} \oplus \mathcal{H}_{i}^{j}\left(V_{i}^{(j)}, E_{i}^{(j)}\right)$ for all $i=1,2, \ldots, k, j=1,2, \ldots, p$. This gives us an m-uniform hypergraph $\mathcal{H}_{\pi}(V, E)$ which is called generalized corona of hypergraphs and we write $\mathcal{H}_{\pi}=\mathcal{H}_{0} \circ_{p}^{k} \mathcal{H}_{i}$.
- Here, we consider the case when $n_{i}=n_{1}$ and \mathcal{H}_{i} 's are r_{1}-regular. Now to find the characteristic polynomial we have the following theorem. We denote $a=\frac{p}{m-1}\left[\binom{n+n_{1}-2}{m-2}-\binom{n}{m-2}\right], b=\binom{n+n_{1}-2}{m-1}, \quad c=\frac{1}{m-1}\left[\binom{n+n_{1}-2}{m-2}-\binom{n_{1}-2}{m-2}\right], D_{i}=$ $A_{\mathcal{H}_{i}}+c\left(J_{n_{1}}-I_{n_{1}}\right), \quad D=\operatorname{diag}\left(I_{p} \otimes D_{1}, I_{p} \otimes D_{2}, \ldots, I_{p} \otimes D_{k}\right)$ and $S=I_{k} \otimes J_{p \times p n_{1}}$. The kronecker product $A \otimes B$ between two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{p q}\right)$ is defined as the partition matrix $\left(a_{i j} B\right)$. For matrices A, B, C and D we have $A B \otimes C D=(A \otimes C)(B \otimes D)$, when multiplication makes sense.

Theorem

Characteristic polynomial of $A_{\mathcal{H}_{\pi}}$ can be expressed as

$$
\begin{equation*}
f_{\mathcal{H}_{\pi}}(x)=\left(\prod_{i=1}^{k} \operatorname{det}\left(D_{i}-x I_{n_{\mathbf{1}}}\right)\right)^{p} \operatorname{det}\left(A_{\mathcal{H}_{\mathbf{0}}}+I_{k} \otimes\left(\left(a-\frac{b^{2} p n_{1}}{r_{1}+\left(n_{1}-1\right) c-x}\right) J_{p}-(a+x) I_{p}\right)\right) . \tag{9}
\end{equation*}
$$

Corollary

Let $p=1$ and $\operatorname{spec}\left(A_{\mathcal{H}_{0}}\right)=\left\{\mu_{i}: i=1,2 \ldots, n\right\}, \operatorname{spec}\left(A_{\mathcal{H}_{i}}\right)=\left\{\lambda_{1}^{(i)}, \lambda_{2}^{(i)}, \ldots, \lambda_{n_{1}}^{(i)}\left(=r_{1}\right)\right\}$. Then the adjacency eigenvalues of $\mathcal{H}_{\pi}=\mathcal{H}_{0} \circ_{1}^{n} \mathcal{H}_{i}$ are $\lambda_{j}^{(i)}-c$ with the multiplicity one for $i=1,2, \ldots, n j=1,2, \ldots, n_{1}-1$ and $\alpha_{i}^{ \pm}$with the multiplicity one for $i=1,2, \ldots, n$ where $\alpha_{i}^{ \pm}=\frac{1}{2}\left[r_{1}+\left(n_{1}-1\right) c+\mu_{i} \pm \sqrt{\left\{r_{1}+\left(n_{1}-1\right) c-\mu_{i}\right\}^{2}+4 b^{2} n_{1}}\right]$.

Corollary

Let $k=1$ and \mathcal{H}_{0} be $r_{0}-$ regular. Let
$\operatorname{spec}\left(A_{\mathcal{H}_{0}}\right)=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\left(=r_{0}\right)\right\}, \operatorname{spec}\left(A_{\mathcal{H}_{1}}\right)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n_{1}}\left(=r_{1}\right)\right\}$ and $\mathcal{H}_{\pi}=\mathcal{H}_{0} \circ^{1} \mathcal{H}_{1}$. Then the adjacency eigenvalues of \mathcal{H}_{π} are given by $r_{1}+\left(n_{1}-1\right) c$ with the multiplicity $n-1, \lambda_{i}$ with the multiplicity n for $i=1,2, \ldots, n_{1}-1, \mu_{j}$ with the multiplicity one for $j=1,2, \ldots, n-1$ and $\alpha^{ \pm}$with the multiplicity one where
$\alpha^{ \pm}=\frac{1}{2}\left[r_{1}+\left(n_{1}-1\right) c+r_{0}+(n-1) a \pm \sqrt{\left\{r_{1}-r_{0}+\left(n_{1}-1\right) c-(n-1) a\right\}^{2}+4 b^{2} n n_{1}}\right]$.

Example

Let $V_{0}=\{1,2, \ldots, 8\}, E_{0}^{(1)}=\{\{1,2,3\},\{3,4,5\},\{5,6,1\},\{2,4,6\},\{7,8,3\},\{7,8,4\},\{7,8,5\}\}$ and $E_{0}^{(2)}=\{\{1,2,3\},\{3,4,5\},\{5,6,1\},\{2,4,6\},\{7,8,1\},\{7,8,2\},\{7,8,6\}\}$. Then $\mathcal{H}_{0}\left(V_{0}, E_{0}^{(1)}\right)$ and $\mathcal{G}_{0}\left(V_{0}, E_{0}^{(1)}\right)$ are non-isomorphic cospectral 3-uniform hypergraphs.

References

(1) A. Sarkar, A. Banerjee. Linear Algebra and its Applications, 603, 101-129, 2020.
(2) A. Banerjee. In Press, Linear Algebra and its Applications, 2020. DOI: 10.1016/j.laa.2020.01.012.
(3) R.B. Bapat. Graphs and matrices. Springer, 2010.
(c) F. Fruchut, F. Harary. On the corona of two graphs. Aequationes Mathematics, 4: 322-325, 1970.
(1) J. Cooper, A. Dutle. Spectra of uniform hypergraphs. Linear Algebra and its Applications, 436: 3268-3292, 2012.

- S. Barik, S. Pati, and B. K Sarma. The spectrum of the corona of two graphs. SIAM J. DISCRETE MATH. 21: 47-56, 2007.
(1) C. McLeman, E. McNicholas. Spectra of coronae. Linear algebra and its applications, 435: 998-1007, 2011.
(3) R. B. Bapat, M. Karimi. Integral complete multipartite graphs. Linear Algebra and its Applications, 549: 1-11, 2018.
- Y. Luo, W. Yau. Spectra of generalized edge corona of graphs. Discrete Mathematics, Algorithms and Applications, 10(1): 185002, 2018.
(40 M. Cardosoa, E. A. Martinsa, M. Robbianob, O. Rojo. Eigenvalues of a H-generalized join graph operation constrained by vertex subsets Domingos. Linear Algebra and its applications, 438: 3278-3290, 2013.
(3) S. Barik, G. Sahoo. On the Laplacian spectra of some variants of corona. Linear algebra and its Applications, 512: 32-47, 2017.
(12) Y. Hou, W. Shiu. The spectrum of the edge corona of two graphs. Electronic journal of linear algebra, 20: 586-594, 2010.
(3) A. Laali, H. Javadi, D. Kiani. Spectra of generalized corona graphs. linear algebra and its Applications, 493: 411-425, 2016.
Amitesh Sarkar, Anirban Banerjee (IISER F Join of hypergraps and their spectra Date: 26.11.2021. $28 / 30$

13. C. D Godsil, B. D. Mckay. Constructing cospectrai graphs. Aequationes Mathematicae University of Waterloo, 25: 257-268, 1982.
(1) C. Bu, J. Zhou, Y.Wei. E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear algebra and its applications, 459: 397-407, 2014.
(1. L. Qi, J.Shao, Q. Wang. Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues. Linear Algebra and its Applications, 443: 215-227, 2014.
L5 L. Duttweiler, N. Reff. Spectra of Cycle and Path Families of Oriented Hypergraphs. Linear Algebra and Applications,578(1): 251-271, 2019.
(18) D. Cvetkovic, P. Rowlinson, S. Simic. An introduction to the theory of graph spectra, Cambridge University Press, 2010.
(13) X. Peng. The Ramsey number of generalized loose paths in hypergraphs. Discrete Mathematics, 339: 539-546, 2016.
T0 S. Agarwal, K. Branson, S. Belongie. Higher order Learning with graphs. in Proceedings of the 23rd International Conference on Machine Learning, ACM, 17-24, 2006. https://doi.org/10.1145/1143844.1143847
T3 R. A. Johnson. Matrix Analysis, Cambridge University Press, Second Edition, 2013.
[3 C. Godsil. Compact Graphs and Equitable partitions. Linear algebra and its applications, 255: 259-266,1997.
(3) C. Delorme. Eigenvalues of complete multipartite graphs. Discrete Mathematics, 312: 2532-2535, 2012.

23 J. A. Rodriguez. On the Laplacian Eigenvalues and Metric Parameters of Hypergraphs. Linear and Multilinear Algebra 50(1): 1-14, 2002.

THANK YOU.

