Join of hypergraps and their spectra

Amitesh Sarkar, Anirban Banerjee¹

¹ Department of Mathematics and Statistics, IISER Kolkata

Date: 26.11.2021.

- A hypergraph $\mathcal{H}(V, E)$ is consists of a vertex set V and an edge set E, where $E \subset \mathcal{P}(V) \setminus \{\phi\}$.
- m-Uniform Hypergraph.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A hypergraph $\mathcal{H}(V, E)$ is consists of a vertex set V and an edge set E, where $E \subset \mathcal{P}(V) \setminus \{\phi\}$.
- m-Uniform Hypergraph.
- Degree of a vertex.
- Regular Hypergraph.
- Paths in hypergraphs is a sequence $v_1e_1v_2e_2...v_le_l$ of distinct vertices and edges satisfying v_i , $v_{i+1} \in e_i$.
- Connected Hypergraph.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

• Let $\mathcal{H}(V, E, W)$ be a hypergraph with the vertex set $V = \{1, 2, ..., n\}$, the edge set E and with an weight function $W : E \to \mathbb{R}_{\geq 0}$ defined by $W(e) = w_e$ for all $e \in E$. The adjacency matrix $A_{\mathcal{H}}$ of \mathcal{H} is defined as

$$(\mathcal{A}_{\mathcal{H}})_{ij} := \sum_{e \in E; i, j \in e} rac{w_e}{|e| - 1}$$

This definition is adopted from the definition of the adjacency matrix of an unweighted non-uniform hypergraph defined in In Press, Linear Algebra and its Applications, 2020. DOI: 10.1016/j.laa.2020.01.012.

• Thus for an *m*-uniform hypergraph $\mathcal H$ we have $(A_{\mathcal H})_{ij} = rac{1}{m-1}\sum_{e\in E, i,j\in e}w_e$. If we take

 $w_e = 1$, then $(A_H)_{ij} = \frac{d_{ij}}{m-1}$ where d_{ij} is the codegree of the vertices i, j, i.e., the number of edges containing both the vertices i and j.

3/30

イロト イヨト イヨト イヨト

Let $\mathcal{H}(V, E, W)$ be an *m*-uniform weighted hypergraph with *n* vertices.

• We say a partition $\pi = \{C_1, C_2, \dots, C_k\}$ of V is an equitable partition of V if for any $p, q \in \{1, 2, \dots, k\}$ and for any $i \in C_p$,

$$\sum_{j,j\in C_q} (A_{\mathcal{H}})_{ij} = b_{pq},$$

where b_{pq} is a constant depends only on p and q.

For an equitable partition with k-number of cells we define the quotient matrix B as $(B)_{pq} = b_{pq}$, for $1 \le p, q \le k$.

• The characteristic matrix P of order $n \times k$ as follows

$$(P)_{ij} = \begin{cases} 1 & \text{if vertex } i \in C_j, \\ 0 & \text{otherwise} \end{cases}$$

- We have $A_{\mathcal{H}}P = PB$ and so $A_{\mathcal{H}}^k P = PB^k$ for any $k \in \mathbb{N}$. Therefore $f(A_{\mathcal{H}})P = Pf(B)$, for any polynomial f(x). If $f(A_{\mathcal{H}})=0$, then Pf(B)=0 and which gives f(B)=0. Again $A_{\mathcal{H}}$ being a real symmetric matrix, is diagonalizable. So minimal polynomial of $A_{\mathcal{H}}$ is product of linear polynomials. Hence minimal polynomial of B is also product of linear polynomials. Therefore B is also diagonalizable.
- For each $\lambda \in spec(B)$ with the multiplicity $r, \lambda \in spec(A_{\mathcal{H}})$ with the multiplicity at lest r.

<ロ> <問> < 回> < 回> < 回>

Let $\mathcal{H}_1(V_1, E_1, W_1)$ and $\mathcal{H}_2(V_2, E_2, W_2)$ be two *m*-uniform hypergraphs. The join $\mathcal{H}(V, E, W) := \mathcal{H}_1 \oplus^{w_{12}} \mathcal{H}_2$ of \mathcal{H}_1 and \mathcal{H}_2 is the hypergraph with the vertex set $V = V_1 \cup V_2$, edge set $E = \bigcup_{i=0}^2 E_i$, where $E_0 = \{e \subseteq V : |e| = m, e \cap V_i \neq \phi, \forall i = 1, 2\}$ and the weight function $W : E \to \mathbb{R}_{>0}$ is defined by

$$W(e) = egin{cases} W_1(e) & ext{if } e \in E_1, \ W_2(e) & ext{if } e \in E_2, \ w_{12} & ext{otherwise}, \end{cases}$$

where w_{12} is a real non-negative constant.

4 D b 4 6 b

Let $S = \{\mathcal{H}_i(V_i, E_i, W_i) : 1 \le i \le k\}$, $|V_i| = n_i$, be a set of *m*-uniform hypergraphs, $k \le m$. Using the set *S*, of hypergraphs we construct a new *m*-uniform hypergraph $\mathcal{H}(V, E, W)$ where $V = \bigcup_{i=1}^k V_i$, $E = \bigcup_{i=0}^k E_i$, $E_0 = \{e \subseteq V : e \cap V_i \ne \phi, \forall i = 1, 2, \dots, k, |e| = m\}$ and $W : E \to \mathbb{R}_{\ge 0}$ defined by

$$W(e) = \begin{cases} W_i(e) & \text{if } e \in E_i \text{ for } i = 1, 2 \dots, k, \\ w_s & \text{otherwise}, \end{cases}$$

where w_s is a real non-negative constant. The resultant hypergraph \mathcal{H} is called the join of a set S of *m*-uniform hypergraphs \mathcal{H}_i 's and it is denoted as $\mathcal{H} := \bigoplus_{i \in S}^{w_s} \mathcal{H}_i$.

4 D b 4 6 b

Adjacency matrix of the join ${\cal H}$

The adjacency matirx $A_{\mathcal{H}}$ of \mathcal{H} can be expressed as

$$(A_{\mathcal{H}})_{ij} = \begin{cases} (A_{\mathcal{H}_p})_{ij} + w_s d_{pp}^{S(m)} & \text{if } i, j \in V_p, \ i \neq j, \\ 0 & i = j, \\ w_s d_{pq}^{S(m)} & \text{if } i \in V_p, j \in V_q, p \neq q \end{cases}$$

where

a

$$I_{pp}^{S(m)} := \frac{1}{m-1} (\text{number of new edges containing two fixed vertices } l_1, l_2 \text{ from } V_p)$$

$$= \frac{1}{m-1} \sum_{\substack{i_p \ge 0, i_j \ge 1, (j \ne p) \\ i_1 + i_2 + \dots + i_k = m-2}} {\binom{n_1}{i_2} \binom{n_2}{i_2} \dots \binom{n_{p-1}}{i_{p-1}} \binom{n_p - 2}{i_p} \binom{n_{p+1}}{i_{p+1}} \dots \binom{n_k}{i_k}}.$$

$$\begin{split} d_{pq}^{S(m)} &:= \frac{1}{m-1} (\text{number of new edges containing two fixed vertices one from } V_p \text{ and another from} \\ &= \frac{1}{m-1} \sum_{\substack{i_p, i_q \ge 0, i_j \ge 1, (j \neq p, q) \\ i_1 + i_2 + \dots + i_k = m-2}} \binom{n_1}{i_1} \binom{n_2}{i_2} \dots \binom{n_{p-1}}{i_{p-1}} \binom{n_p-1}{i_p} \binom{n_{p+1}}{i_{p+1}} \dots \\ & \binom{n_{q-1}}{i_{q-1}} \binom{n_q-1}{i_q} \binom{n_{q+1}}{i_{q+1}} \dots \binom{n_k}{i_k}. \end{split}$$

Date: 26.11.2021.

Let $\mathcal{H}(V, E, W)$ be an *m*-uniform hyperghraph. We call the hypergraph $\mathcal{H}_b(V_b, E_b, W_b)$, $V_b = \{1, 2, ..., n\}$ as a backbone of \mathcal{H} if \mathcal{H} can be constructed by a set $S = \{\mathcal{H}_i(V_i, E_i, W_i): i = 1, 2, ..., n\}$, of *m*-uniform hypergraphs, $(m \ge max\{|e|: e \in E_b\})$ with the following operations:

- **()** Replace vertex *i* of \mathcal{H}_b by \mathcal{H}_i , for i = 1, 2, ..., n.
- ② For each edge $e = \{j_1, j_2, ..., j_k\} \in E_b$, take $S_e = \{\mathcal{H}_{j_i} : i = 1, 2, ..., k\}$ and apply the operation $\bigoplus_{S_e}^{W_b(e)}$ defined above.

We call the hypergraphs \mathcal{H}_i 's as participants on the backbone \mathcal{H}_b to form the hypergraph \mathcal{H} . Thus the adjacency matrix for \mathcal{H} can be written as

$$(A_{\mathcal{H}})_{ij} = \begin{cases} (A_{\mathcal{H}_p})_{ij} + \sum_{e \in E_b, p \in e} W_b(e) d_{pp}^{S_e(m)} & \text{if } i, j \in V_p, i \neq j, \\ 0 & \text{if } i = j, \\ \sum_{e \in E_b, p, q \in e} W_b(e) d_{pq}^{S_e(m)} & \text{if } i \in V_p, j \in V_q, p \neq q. \end{cases}$$

(日) (同) (日) (日)

• A matrix A is called reducible if there exists a permutation matrix P such that

$$PAP^{t} = \begin{bmatrix} (B)_{k \times k} & C \\ 0 & (D)_{(n-k) \times (n-k)} \end{bmatrix}$$

otherwise A is said to be irreducible.

• \mathcal{H} is connected iff $A_{\mathcal{H}}$ is irreducible.

Perron-Frobenius Theorem Let A be a non-negative irreducible matrix. Then

- A has a positive eigenvalue λ with positive eigenvector.
- λ is simple and for any other eigenvalue μ of A, $|\mu| \leq \lambda$.

Schur complement

Let A be an $n \times n$ matrix partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} and A_{22} are square matrices. If A_{11} and A_{22} are invertible, then

$$det(A) = det(A_{11})det(A_{22} - A_{12}A_{11}^{-1}A_{21})$$
(1)

$$= det(A_{22})det(A_{11} - A_{21}A_{11}^{-1}A_{12}).$$
⁽²⁾

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Let $\mathcal{H}_b(V_b, E_b, W_b)$ be a hypergraph with the vertex set $V_b = \{1, 2, ..., n\}$ and let $\{\mathcal{H}_i(V_i, E_i, W_i) : i = 1, 2, ..., n\}$ be a collection of regular m-uniform hypergraphs $(m \ge \{|e| : e \in E_b\})$. Let $\mathcal{H}(V, E, W)$ be the m-uniform hypergraph constructed by taking \mathcal{H}_b as backbone hypergraph and \mathcal{H}_i 's as participants. Then for any non-Perron eigenvalue λ of $A_{\mathcal{H}_p}$ with multiplicity I, $\lambda - \sum_{e \in E_b, p \in e} W_b(e) d_{pp}^{S_e(m)}$ is an eigenvalue of $A_{\mathcal{H}}$ with the multiplicity at least I.

Proof.

Let (λ, f) be an eigenpair of $A_{\mathcal{H}_p}$, such that f is orthogonal to the constant vector $[1, 1, 1, \ldots, 1]^t$. We define $f^* : V \to \mathbb{R}$ by

$$f^*(v) = egin{cases} f(v) & ext{if } v \in V_p, \ 0 & ext{otherwise}. \end{cases}$$

Thus f^* is an eigenvector of $A_{\mathcal{H}}$ corresponding to the eigenvalue $\lambda - \sum_{e \in E_b, p \in e} w_e d_{pp}^{S_e(m)}$. Since $\sum_{i \in V_p} f(i) = 0$, thus the proof follows.

(日) (周) (日) (日) (日) (0)

When $\mathcal{H}_i(V_i, E_i, W_i)$'s are regular, the partition $\pi = \{V_1, V_2, \dots, V_n\}$ forms an equitable partition for \mathcal{H} . In particular if \mathcal{H}_i 's are r_i regular then the quotient matrix B is as follows

$$(B)_{pq} = \begin{cases} r_{p} + (n_{p} - 1) \sum_{e \in E_{b}, p \in e} W_{b}(e) d_{pp}^{S_{e}(m)} & \text{if } p = q, \\ n_{q} \sum_{e \in E_{b}, p, q \in e} w_{b}(e) d_{pq}^{S_{e}(m)} & \text{otherwise.} \end{cases}$$
(3)

Let $\{g_i|i=1,2,\ldots,n\}$ be a set of linearly independent eigenvectors of B. Then $\{Pg_i|i=1,2,\ldots,n\}$ is also a set of linearly independent eigenvectors of $A_{\mathcal{H}}$. Now from the proof of Theorem 1 we have $N := \sum_{i=1}^{n} n_i - n$ linearly independend eigenvectors $\{f_i^*|i=1,2,\ldots,N\}$ of $A_{\mathcal{H}}$. So we have a set $\{Pg_i|i=1,2,\ldots,n\} \cup \{f_i^*|i=1,2,\ldots,N\}$ of $\sum_{i=1}^{n} n_i$ eigenvectors of $A_{\mathcal{H}}$. Now we show that this set is linearly independent. Here for all i, j

$$< f_i^*, Pg_j > = \sum_{p=1}^n (\sum_{k \in V_p} f_i^*(k)) C_{j_p} \quad [\because Pg_j(k) = C_{j_p}, \text{ constant for all } k \in V_p.]$$
$$= 0 \quad [\because \sum_{k \in V_p} f_i^*(k) = 0.]$$

Therefore in Theorem 1 the remaining n eigenvalues of $A_{\mathcal{H}}$ can be obtained from B.

11 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

Let $S = \{\mathcal{H}_i(V_i, E_i, W_i) : 1 \le i \le k \le m\}$ be a set of *m*-uniform hypergraphs where \mathcal{H}_i are r_i -regular. Let $\mathcal{H} = \bigoplus_{\mathcal{H}_i \in S}^{w_s} \mathcal{H}_i$. Then for any non-perron eigenvalue λ of $A_{\mathcal{H}_i}$ with the multiplicity I, $\lambda - w_s d_{ii}^{S(m)}$ is an eigenvalue of $A_{\mathcal{H}}$ with multiplicity at least I.

Note that the remaining k eigenvalues can be obtained from the quotient martrix B defined as

$$(B)_{pq} = \begin{cases} r_p + (n_p - 1)w_s d_{pp}^{S(m)} & \text{if } p = q, \\ n_q w_s d_{pq}^{S(m)} & \text{otherwise} \end{cases}$$

Example

Take $\mathcal{H}_i = \overline{K}_{n_i}^m$, $1 \le i \le k \le m$, $S = \{\mathcal{H}_i : i = 1, 2, ..., k\}$ and $w_s = 1$. Then $\oplus_{\mathcal{H}_i \in S}^1 \mathcal{H}_i = K_{n_1, n_2, ..., n_k}^m$, which is the weak *m*-uniform *k*-partite complete hypergraph. Using the above corollary we get that for any i = 1, 2, ..., k; $-d_{pp}^{S(m)}$ is an eigenvalue of $A_{K_{n_1, n_2, ..., n_k}^m}$ with the multiplicity atleast $(n_i - 1)$ for i = 1, 2, ..., k. The remaining eigenvalues of $A_{K_{n_1, n_2, ..., n_k}^m}$ are the eigenvalues of the quotient matrix *B*, defined as

$$(B)_{pq} = \begin{cases} (n_p - 1)d_{pp}^{S(m)} & \text{if } p = q, \\ n_q d_{pq}^{S(m)} & \text{otherwise} \end{cases}$$

《口》 《聞》 《臣》 《臣》

• In the above example, if we take k = m, we have 0 as an eigenvalue of $A_{K_{n_1}^m, n_2, ..., n_m}$ with the multiplicity at least $\sum_{i=1}^m n_i - m$. Here, the quotient matrix formed by the equitable partition $\pi = \{V_1, V_2, ..., V_m\}$ and which is given by

$$B = rac{1}{m-1} egin{bmatrix} 0 & s_1 & \cdots & s_1 & s_1 \ s_2 & 0 & \cdots & s_2 & s_2 \ \vdots & \vdots & \ddots & \vdots & \vdots \ s_m & s_m & \cdots & s_m & 0 \end{bmatrix},$$

where $s_i = \prod_{j=1, j \neq i}^m n_j$.

• Note that $\alpha(\neq 0) \in spec(K^m_{n_1,n_2,...,n_m})$ if and only if $r^{m-1}\alpha \in spec(K^m_{m_1,m_2,...,rn_m})$ for $r \in \mathbb{N}$.

• Let
$$\mathcal{H} = K \underbrace{\underset{l_1}{\overset{m}{\underbrace{n_1, n_1, \dots, n_1}}}_{l_1}, \underbrace{\underset{l_2}{\underbrace{n_2, \dots, n_2}}}_{l_2}, \text{ where } l_1 + l_2 = m.$$
 Then the quotient matrix B for

the equitable partition formed by the *m*-parts of \mathcal{H} can be written as $B = \frac{1}{m-1}B'$, where B' is given by

$$\begin{bmatrix} s_1(J_{l_1} - I_{l_1}) & s_1 J_{l_1 \times l_2} \\ s_2 J_{l_2 \times l_1} & s_2(J_{l_2} - I_{l_2}) \end{bmatrix}$$

where $s_1 = n_1^{l_1-1} n_2^{l_2}$, $s_2 = n_1^{l_1} n_2^{l_2-1}$.

• We have the characteristic polynomial of B' as follows

$$\begin{split} f_{B'}(x) &= det(B'-xI) \\ &= det\left(s_2 J_{l_2} - (s_2 - x)I\right) det\left(s_1 J_{l_1} - (s_1 + x)I - s_1 s_2 J_{l_1 \times l_2}(s_2 J_{l_2} - (s_2 + x)I)^{-1} J_{l_2 \times l_1} \\ &= (-1)^{m-2}(x + s_1)^{l_1 - 1}(x + s_2)^{l_2 - 1}(x - a^+)(x - a^-), \\ \end{split}$$
where $a^{\pm} &= \frac{1}{2} \left[s_1(l_1 - 1) + s_2(l_2 - 1) \pm \sqrt{\{s_1(l_1 - 1) + s_2(l_2 - 1)\}^2 + 4s_1 s_2(l_1 + l_2 - 1)}\right].$
Thus the eigenvalues of \mathcal{H} are $\frac{-s_i}{m-1}$ with the multiplicity $l_i - 1$ for $i = 1, 2$ and $\frac{a^{\pm}}{m-1}$ with the multiplicity 1

14 / 30

Using a result (1) from R. B. Bapat, M. Karimi. Integral complete multipartite graphs. Linear Algebra and its Applications, 549: 1-11, 2018 we have the following result

Proposition

Characteristic polynomial of
$$K_{n_{1},n_{2},...,n_{m}}^{m}$$
 is $x^{n-m}\left(x^{m} - \sum_{i=2}^{m} \frac{i-1}{(m-1)^{i}}\sigma_{i}(s_{1},s_{2},...,s_{m})x^{m-i}\right)$
where $n = \sum_{i=1}^{m} n_{i}$, $s_{i} = \prod_{j=1, j \neq i}^{m} n_{j}$ and $\sigma_{i}(s_{1},s_{2},...,s_{m}) = \sum_{1 \le j_{1} < j_{2} < \cdots < j_{j} \le m} s_{j_{1}}s_{j_{2}} \ldots s_{j_{j}}$.

• From the above result it is clear that the quotient matrix B is non-singular. Hence the multiplicity of eigenvalue 0 of $K_{n_1,n_2,...,n_m}^m$ is n-m.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Edge Corona

Let $\mathcal{H}_0(V_0, E_0)$ be an *m*-uniform hypergraph with the edge set $E_0 = \{e_1, e_2, \ldots, e_k\}$ and $|V_0| = n_0$. Also let $\mathcal{H}_i(V_i, E_i)$ $(i = 1, 2, \ldots, k)$ be *m*-uniform hypergraphs. For each $i = 1, 2, \ldots, k$ we consider $e_i \oplus \mathcal{H}_i$. The new hypergraph is known as the edge corona of hypergraphs and we write it by $\mathcal{H} = \mathcal{H}_0 \Box^k \mathcal{H}_i$. When $|V_i| = n_1$ for all $i = 1, \ldots, k$, we write $D_i = A_{\mathcal{H}_i} + c(J_{n_1} - I_{n_1})$, take $D = diag(D_1, D_2, \ldots, D_k)$, R = vertex-edge incidence matrix, for $\mathcal{H}_0, 1_{n_1} = [1, 1, \ldots, 1]$ row vector of length n_1 , $a = \binom{m+n_1-2}{m-2} - 1$, $b = \frac{1}{m-1} \binom{n+n_1-2}{m-2}$, $c = \binom{m+n_1-2}{m-2} - \binom{n_1-2}{m-2}$.

Theorem

Let $\mathcal{H}_0(V_0, E_0)$ be an *m*-uniform hypergraph with $|V_0| = n$, $|E_0| = k$. Let $\{\mathcal{H}_i(V_i, E_i) : 1 \le i \le k, |V_i| = n_1\}$ be a set of *m*-uniform hypergraphs. Then the the characteristic polynomial of $A_{\mathcal{H}}$ for the edge corona $\mathcal{H} = \mathcal{H}_0 \Box^k \mathcal{H}_i$ is as follows

$$f_{\mathcal{H}}(x) = det(D - xI_{kn_1})det(\{(a+1)A_{\mathcal{H}_0} - xI_n - b^2(R \otimes 1_{n_1})(D - xI_{kn_1})^{-1}(R^T \otimes 1_{n_1}^T)\}).$$
(4)

イロト イボト イヨト イヨト 二日

Corollary

Let \mathcal{H}_i 's be r_1 -regular hypergraphs and spec $(\mathcal{A}_{\mathcal{H}_i}) = \{\lambda_i^{(1)}, \lambda_i^{(2)}, \dots, \lambda_i^{(n_1)}(=r_1)\}$. Then the characteristic polynomial of \mathcal{H} can be given by

$$f_{\mathcal{H}}(x) = \{r_1 + (n_1 - 1)c - x\}^{k-n} det \left(\beta_1(x)A_{\mathcal{H}_0} - b^2 n_1 D_d + \beta_2(x)I_n\right) \prod_{i=1}^k \prod_{j=1}^{n_1-1} (\lambda_i^{(j)} - c - x),$$
(5)

where $D_d = diag(d_1, d_2, ..., d_n)$ where d_i denote the degree of vertices of $A_{\mathcal{H}_0}$, $\beta_1(x) = (a+1)\{r_1 + (n_1 - 1)c - x\} - (m-1)b^2n_1$, $\beta_2(x) = x\{x - r_1 - (n_1 - 1)c\}$.

Corollary

Let \mathcal{H}_i 's be the hypergraphs mentioned in the above corollary and \mathcal{H}_0 be r-regular with $\operatorname{spec}(A_{\mathcal{H}_0}) = \{\mu_1, \mu_2, \dots, \mu_n(=r)\}$. Then the adjacency eigenvalues of \mathcal{H} are $r_1 + (n_1 - 1)c$ with the multiplicity k - n, $\lambda_i^{(j)}$ with the multiplicity one, for all $i = 1, 2, \dots, k, j = 1, 2, \dots, n_1 - 1$ and β_j^{\pm} with the multiplicity one for $j = 1, 2, \dots, n$, where $\beta_j^{\pm} = \frac{1}{2} \Big[r_1 + (n_1 - 1)c + (a + 1)\mu_j \pm \sqrt{\{r_1 + (n_1 - 1)c - (a + 1)\mu_j\}^2 + 4b^2n_1\{(m - 1)\mu_j + r\}} \Big].$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalized s-loose path $P_{L(s;n)}^{(m)}$ is an *m*-uniform hypergraph with the vertex set $V = \{1, 2, ..., m + (n-1)(m-1)\}$ and edge set the $E = \{\{i(m-s)+1, i(m-s)+2, ..., i(m-s)+m\} : i = 0, 1, ..., n-1\}$ [Peng2016]. For s = 1, $P_{L(1;n)}^{(m)}$ is known as loose path. Similarly, generalized s-loose cycle $C_{L(s;n)}^{m}$ is an *m*-uniform hypergraph with the vertex set $V = \{1, 2, ..., n(m-s)\}$ and the edge set $\{i(m-s)+1, ..., i(m-s)+m\} : i = 0, 1, ..., n-1\} \cup \{n(m-s)-s+1, n(m-s)-s+2, ..., n(m-s), 1, 2, ..., s\}$.

Loose cycle

▶ < ∃ >

Theorem

The adjacency eigenvalues of an s-loose cycle $C_{L(s;n)}^{(m)}$, are

•
$$\frac{-2}{2s-1}$$
 with the multiplicity $n(s-1)$ and $\frac{2}{2s-1}(s-1+s\cos\frac{2\pi i}{n})$ with the multiplicity
one, for $i = 1, 2, ..., n$, when $m = 2s$ and
• $\frac{-1}{m-1}$ with the multiplicity atleast $n(m-2s-1)$, $\frac{-2}{m-1}$ with the multiplicity atleast $n(s-1)$ and γ_i^+ , γ_i^- with the multiplicity atleast one, where,
 $\gamma_i^{\pm} = \frac{1}{2} \left[m-3+2s\cos\frac{2\pi i}{n} \pm \sqrt{(m-3+2s\cos\frac{2\pi i}{n})^2 + 8(m-s-1+s\cos\frac{2\pi i}{n})} \right]$,
for $i = 1, 2, ..., n$, when $m \ge 2s + 1$.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Loose cycles and loose paths

Proof.

- Case m = 2s: Let $\mathcal{H} = C_{l(s;n)}^{(2s)}$. In the Theorem 1 take $\mathcal{H}_b = C_n$, the cycle graph over n vertices, and $\mathcal{H}_i = K_s$, the complete graph with s-vertices with each edge weight two. Then the resultant hypergraph is a graph, G(say). Hence $A_{\mathcal{H}} = \frac{1}{2s-1}A_{\mathcal{G}}$. Thus $\frac{-2}{2s-1}$ is an eigenvalue of $A_{\mathcal{H}}$ with the multiplicity atleast n(s-1). The quotient matrix is $B = \frac{1}{2s-1} \{ sA_{C_n} + 2(s-1)I_n \}.$ The remaining eigenvalues of $A_{\mathcal{H}}$ are $\frac{2}{2s-1} (s-1+s\cos\frac{2\pi i}{n}) \text{ for } i = 1, 2, \dots, n.$ • Case $m \ge 2s + 1$: Let $\mathcal{H}_b = C_n \Box^n K_1$ and $\mathcal{H} = C_{L(s;n)}^{(m)}$. We take the vertices of \mathcal{H}_b as $V(C_n) = \{1, 2, ..., n\}$ and $V(G_b) \setminus V(C_n) = \{n+1, n+2, ..., 2n\}$. For i = 1, 2, ..., n, we take $\mathcal{H}_i = K_s$, the complete graph with s vertices with edge weight 1, and for $i = n + 1, \ldots, 2n$, take $G_i = K_{m-2s}$ with edge weight 2. Considering \mathcal{H}_b as backbone graph with each edge weight one and G_i 's as participants, we get a graph G (say). Then
 - $A_{\mathcal{H}} = \frac{1}{m-1}A_G$. Now using the Theorem 1 we get the eigenvalues of A_G which are -1 with the multiplicity at least n(m-2s-1) and -2 with multiplicity n(s-1).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof.

Next using Equation (3) we have the remaining 2n eigenvalues are the eigenvalues of the quotient matrix B given by

$$(B)_{pq} = rac{1}{m-1} egin{cases} r_q & ext{if } p = q, \ n_q & ext{if } p \sim q ext{ in } G_B, \ 0 & ext{otherwise,} \end{cases}$$

where $r_q = 2s - 2$, $n_q = s$ for q = 1, 2, ..., n and $r_q = m - 2s - 1$, $n_q = m - 2s$ for q = n + 1, ..., 2n. We write

$$B = \frac{1}{m-1} \begin{bmatrix} (2s-2)I_n + sA_{C_n} & t(I_n+Y) \\ s(I_n+Y^t) & (t-1)I_n \end{bmatrix},$$

where t = m - 2s, A_{C_n} is the adjacency matrix of an *n*-cycle C_n and Y is the $n \times n$ circulant matrix with the first row [0, 0, ..., 1]. We suppose $B = \frac{1}{m-1}B'$. Then using Lemma 9 and the fact $(I_n + Y)(I_n + Y^t) = 2I_n + A_{C_n}$ we have the cahracteristic polynomial of B', as follows

$$f_{B'}(x) = det(B' - xI_n)$$

= $det(\{(t - 1 - x)I_n\})det(\{sA_{C_n} + (2s - 2 - x)I_n - \frac{st}{t - 1 - x}(I_n + Y)(I_n + Y^t)\})$
= $det(\{x^2 - (2s + t - 3)x - (2s + 2t - 2)\}I_n - (s + sx)A_{C_n}).$ (6)

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The eigenvalues of A_{C_n} are $\mu_i = 2 \cos \frac{2\pi i}{n}$, i = 1, 2..., n. Thus from the Equation (6) we have

$$f_{B'}(x) = \prod_{i=1}^{n} \{x^2 - (2s + t - 3 + s\mu_i)x - (2s + 2t - 2 + s\mu_i)\}$$
$$= \prod_{i=1}^{n} (x - \gamma_i^+)(x - \gamma_i^-).$$
(7)

Question: What are the adjacency eigenvalues of $C^m_{L(s;n)}$ for $m \leq 2s - 1$?

Lemma

For a square matrix A we have

$$det(A + \sum_{i=1,n} u_{ii}E_{ii}) = det(A) + \sum_{i=1,n} u_{ii}det(A(i|i)) + u_{11}u_{nn}det(A(1,n|1,n)),$$
(8)

《曰》 《聞》 《臣》 《臣》

where A(i|j) is the matrix obtained from A by deleting the *i*-th row and *j*-th column, respectively, and $E_{i,j}$ is the matrix with 1 in (i,j)-th position and zero elsewhere.

Theorem

The adjacency eigenvalues of an s-loose path $P_{L(s,n)}^m$ are

• $\frac{-1}{m-1}$ with the multiplicity at least n(m-1) - 2s(n-1), $\frac{-2}{m-1}$ with the multiplicity at least (n-1)(s-1) and $\frac{\alpha_i}{m-1}$ with the multiplicity one, for i = 1, 2, ..., 2n-1, where α_i 's are the zeros of the polynomial

$$\frac{(m-s-1-x)^2 f_1(x) + 2s^2(1+x)(m-s-1-x)f_2(x) + s^4(1+x)^2 f_3(x)}{m-2s-1-x},$$

where

$$f_j(x) = \prod_{i=1}^{n-j} \{x^2 - (m-3+2s\cos\frac{\pi i}{n-j+1})x - 2(m-s-1-x+s\cos\frac{\pi i}{n-j+1})\}.$$

for
$$j = 1, 2, 3$$
, when $m \ge 2s + 1$ and
and $\frac{-1}{m-1}$ with the multiplicity $2(s-1)$, $\frac{-2}{m-1}$ with multiplicity $(n-1)(s-1)$ and $\frac{\beta_i}{2s-1}$ with the multiplicity one, where β_i are the zeros of the polynomial $(x-s+1)^2 t_1(x) + 2s^2(x-s+1)t_2(x) + s^4 t_3(x)$, where $t_j(x) = \prod_{i=1}^{n-j} (2s-2-x+2s\cos\frac{\pi i}{n-j+1})$, for $j = 1, 2, 3$ when $m = 2s$.

3

24 / 30

・ロト ・四ト ・ヨト ・ヨト

Vertex Corona

- Let $\mathcal{H}(V, E)$ be an *m*-uniform hypergraph. A subhypergraph induced by $V' \subset V$ is the hypergraph $\mathcal{H}[V']$ with the vertex set V' and edge set $E' = \{e : e \in E, e \subset V'\}$. Now for $V' \subset V$ and a hypergraph $\mathcal{H}''(V'', E'')$, we denote $V' \oplus \mathcal{H}''$ as the hypergraph with the vertex set $V' \cup V''$ and edge set $E(\mathcal{H}[V'] \oplus \mathcal{H}'') \cup E(\mathcal{H})$.
- Let $\mathcal{H}_0(V_0, E_0)$ be an *m*-uniform hypergraph and $\pi = \{V_0^{(1)}, V_0^{(2)}, \dots, V_0^{(k)}\}$ be a partition of $V_0 = \{1, 2, \dots, n(=pk)\}$ with $V_0^{(i)} = \{(i-1)p+1, (i-1)p+2, \dots, ip\}$ for $i = 1, 2, \dots, k$. Also let $\{\mathcal{H}_i(V_i, E_i) : 1 \le i \le k\}$ be a set of *m*-uniform hypergraphs with $|V_i| = n_i$. For each $i = 1, 2, \dots, k$, we take *p* copies, $\{\mathcal{H}_i^{(j)}(V_i^{(j)}, E_i^{(j)}) : j = 1, 2, \dots, p\}$, of $\mathcal{H}_i(V_i, E_i)$. Then we consider $V_0^{(i)} \oplus \mathcal{H}_i^j(V_i^{(j)}, E_i^{(j)})$ for all $i = 1, 2, \dots, k, j = 1, 2, \dots, p$. This gives us an *m*-uniform hypergraph $\mathcal{H}_\pi(V, E)$ which is called generalized corona of hypergraphs and we write $\mathcal{H}_\pi = \mathcal{H}_0 \circ_p^k \mathcal{H}_i$.
- Here, we consider the case when $n_i = n_1$ and \mathcal{H}_i 's are r_1 -regular. Now to find the characteristic polynomial we have the following theorem. We denote

 $a = \frac{p}{m-1} \Big[\binom{n+n_1-2}{m-2} - \binom{n}{m-2} \Big], \ b = \binom{n+n_1-2}{m-1}, \ c = \frac{1}{m-1} \Big[\binom{n+n_1-2}{m-2} - \binom{n_1-2}{m-2} \Big], \ D_i = A_{\mathcal{H}_i} + c(J_{n_1} - I_{n_1}), \ D = diag(I_p \otimes D_1, I_p \otimes D_2, \dots, I_p \otimes D_k) \text{ and } S = I_k \otimes J_{p \times pn_1}.$ The kronecker product $A \otimes B$ between two matrices $A = (a_{ij})$ and $B = (b_{pq})$ is defined as the partition matrix $(a_{ij}B)$. For matrices A, B, C and D we have $AB \otimes CD = (A \otimes C)(B \otimes D)$, when multiplication makes sense.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Theorem

Characteristic polynomial of $A_{\mathcal{H}_{\pi}}$ can be expressed as

$$f_{\mathcal{H}_{\pi}}(x) = \left(\prod_{i=1}^{k} det(D_{i} - xI_{n_{1}})\right)^{p} det\left(A_{\mathcal{H}_{0}} + I_{k} \otimes \left((a - \frac{b^{2}pn_{1}}{r_{1} + (n_{1} - 1)c - x})J_{p} - (a + x)I_{p}\right)\right).$$
(9)

Corollary

Let p=1 and $spec(A_{\mathcal{H}_0}) = \{\mu_i : i = 1, 2, ..., n\}$, $spec(A_{\mathcal{H}_i}) = \{\lambda_1^{(i)}, \lambda_2^{(i)}, ..., \lambda_{n_1}^{(i)} = r_1\}$. Then the adjacency eigenvalues of $\mathcal{H}_{\pi} = \mathcal{H}_0 \circ_1^n \mathcal{H}_i$ are $\lambda_j^{(i)} - c$ with the multiplicity one for $i = 1, 2, ..., n \ j = 1, 2, ..., n_1 - 1$ and α_i^{\pm} with the multiplicity one for i = 1, 2, ..., n where $\alpha_i^{\pm} = \frac{1}{2} \Big[r_1 + (n_1 - 1)c + \mu_i \pm \sqrt{\{r_1 + (n_1 - 1)c - \mu_i\}^2 + 4b^2 n_1} \Big].$

< ロ > < 同 > < 三 > < 三 > 、

Corollary

Let k = 1 and \mathcal{H}_0 be r_0 -regular. Let $spec(A_{\mathcal{H}_0}) = \{\mu_1, \mu_2, \dots, \mu_n (= r_0)\}$, $spec(A_{\mathcal{H}_1}) = \{\lambda_1, \lambda_2, \dots, \lambda_{n_1} (= r_1)\}$ and $\mathcal{H}_{\pi} = \mathcal{H}_0 \circ^1 \mathcal{H}_1$. Then the adjacency eigenvalues of \mathcal{H}_{π} are given by $r_1 + (n_1 - 1)c$ with the multiplicity n - 1, λ_i with the multiplicity n for $i = 1, 2, \dots, n_1 - 1$, μ_j with the multiplicity one for $j = 1, 2, \dots, n - 1$ and α^{\pm} with the multiplicity one where $\alpha^{\pm} = \frac{1}{2} \Big[r_1 + (n_1 - 1)c + r_0 + (n - 1)a \pm \sqrt{\{r_1 - r_0 + (n_1 - 1)c - (n - 1)a\}^2 + 4b^2nn_1} \Big].$

Let $V_0 = \{1, 2, \dots, 8\}$, $E_0^{(1)} = \{\{1, 2, 3\}, \{3, 4, 5\}, \{5, 6, 1\}, \{2, 4, 6\}, \{7, 8, 3\}, \{7, 8, 4\}, \{7, 8, 5\}\}$ and $E_0^{(2)} = \{\{1, 2, 3\}, \{3, 4, 5\}, \{5, 6, 1\}, \{2, 4, 6\}, \{7, 8, 1\}, \{7, 8, 2\}, \{7, 8, 6\}\}$. Then $\mathcal{H}_0(V_0, E_0^{(1)})$ and $\mathcal{G}_0(V_0, E_0^{(1)})$ are non-isomorphic cospectral 3-uniform hypergraphs.

References

- 3 A. Sarkar, A. Banerjee. Linear Algebra and its Applications, 603, 101-129, 2020.
- A. Banerjee. In Press, Linear Algebra and its Applications, 2020. DOI: 10.1016/j.laa.2020.01.012
- 8 R B Bapat. Graphs and matrices. Springer, 2010.
- 9 F. Fruchut, F. Harary. On the corona of two graphs. Aequationes Mathematics, 4: 322-325, 1970.
- **9** J. Cooper, A. Dutle. Spectra of uniform hypergraphs. Linear Algebra and its Applications, 436: 3268-3292. 2012.
- O S. Barik, S. Pati, and B. K Sarma. The spectrum of the corona of two graphs. SIAM J. DISCRETE MATH 21: 47-56, 2007.
- O. McLeman, E. McNicholas. Spectra of coronae. Linear algebra and its applications, 435: 998-1007, 2011
- 8 R. B. Bapat, M. Karimi. Integral complete multipartite graphs. Linear Algebra and its Applications, 549: 1-11, 2018.
- Y. Luo, W. Yau. Spectra of generalized edge corona of graphs. Discrete Mathematics, Algorithms and Applications, 10(1): 185002, 2018
- 🤹 M. Cardosoa, E. A. Martinsa, M. Robbianob, O. Rojo. Eigenvalues of a H-generalized join graph operation constrained by vertex subsets Domingos. Linear Algebra and its applications, 438: 3278-3290, 2013
- 3 S. Barik, G. Sahoo. On the Laplacian spectra of some variants of corona. Linear algebra and its Applications, 512: 32-47, 2017
- 🔹 Y. Hou, W. Shiu. The spectrum of the edge corona of two graphs. Electronic journal of linear algebra, 20: 586-594, 2010.
- 🔹 A. Laali, H. Javadi, D. Kiani. Spectra of generalized corona graphs. linear algebra and its Applications, 493 411-425, 2016. イロト イヨト イヨト イヨト = 990 Date: 26.11.2021.

28 / 30

Amitesh Sarkar, Anirban Banerjee (IISER F Join of hypergraps and their spectra

- C. D Godsil, B. D. Mckay. Constructing cospectral graphs. Aequationes Mathematicae University of Waterloo, 25: 257-268, 1982.
- C. Bu, J. Zhou, Y.Wei. E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear algebra and its applications, 459: 397-407, 2014.
- L. Qi, J.Shao, Q. Wang. Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues. Linear Algebra and its Applications, 443: 215-227, 2014.
- L. Duttweiler, N. Reff. Spectra of Cycle and Path Families of Oriented Hypergraphs. Linear Algebra and Applications, 578(1): 251-271, 2019.
- D. Cvetkovic, P. Rowlinson, S. Simic. An introduction to the theory of graph spectra, Cambridge University Press, 2010.
- X. Peng. The Ramsey number of generalized loose paths in hypergraphs. Discrete Mathematics, 339: 539-546, 2016.
- S. Agarwal, K. Branson, S. Belongie. Higher order Learning with graphs. in Proceedings of the 23rd International Conference on Machine Learning, ACM, 17-24, 2006. https://doi.org/10.1145/1143844.1143847
- 4 R. A. Johnson. Matrix Analysis, Cambridge University Press, Second Edition, 2013.
- C. Godsil. Compact Graphs and Equitable partitions. Linear algebra and its applications, 255: 259-266,1997.
- C. Delorme. Eigenvalues of complete multipartite graphs. Discrete Mathematics, 312: 2532-2535, 2012.
- J. A. Rodriguez. On the Laplacian Eigenvalues and Metric Parameters of Hypergraphs. Linear and Multilinear Algebra 50(1): 1-14, 2002.

イロト イボト イヨト イヨト

THANK YOU.

イロン イヨン イヨン イヨン